
In today's rapidly evolving technological landscape, the intersection of Robotic Process Automation
(RPA) and artificial intelligence (AI) has ushered in a new era of efficiency and innovation. My
journey into developing RPA nano services stems from a profound belief in leveraging technology
to streamline processes traditionally reliant on manual programming.

What is RPA Nano?
Workflow
API Server Installation
Run RPA Router as Service
Run Server with Virtual Environment
NLP Parser
API References
NLP Library Installation

RPA Nano

In today's rapidly evolving technological landscape, the intersection of Robotic Process Automation
(RPA) and artificial intelligence (AI) has ushered in a new era of efficiency and innovation. My
journey into developing RPA nano services stems from a profound belief in leveraging technology
to streamline processes traditionally reliant on manual programming.

Having immersed myself in the realm of software development, I observed firsthand the
complexities and time-intensive nature of traditional programming tasks. Recognizing the potential
of RPA to automate repetitive and rule-based activities, I embarked on a path to harness its
transformative power. RPA nano services emerged as a focal point—an agile, modular approach
designed to automate specific tasks with precision and scalability.

The development of RPA nano services revolves around dissecting complex programming tasks
into granular components. Each nano service is meticulously crafted to address a distinct function,
ranging from data extraction and validation to integration with existing systems. By encapsulating
these functionalities into self-contained units, RPA nano services not only enhance operational
efficiency but also reduce dependency on traditional programming paradigms.

Central to my endeavor is the aspiration to redefine the role of programmers through RPA AI
technology. By delegating routine programming tasks to automated processes, programmers are
liberated to focus on higher-value activities such as algorithm design, system architecture, and

What is RPA Nano?
Introduction

Background

Development of RPA Nano
Services

Impact on Programming Paradigms

strategic innovation. This shift not only accelerates development cycles but also empowers teams
to tackle more ambitious projects with agility and creativity.

The integration of AI within RPA further amplifies its capabilities, enabling intelligent decision-
making and adaptive learning. Machine learning algorithms embedded within RPA systems
continuously optimize processes, learning from data patterns to deliver increasingly refined
outcomes. This symbiotic relationship between RPA and AI not only augments operational
efficiency but also fosters a culture of continuous improvement within organizations.

Illustrating the impact of RPA nano services, numerous case studies exemplify their transformative
influence across diverse industries. From automating financial reconciliations and customer service
operations to enhancing supply chain management, organizations have realized significant cost
savings, error reduction, and enhanced scalability through the adoption of RPA AI technologies.

Looking ahead, the trajectory of RPA nano services is poised for exponential growth. As
organizations embrace digital transformation initiatives, the demand for agile, scalable automation
solutions will continue to soar. By championing the convergence of RPA and AI, I envision a future
where programming is redefined—not as a laborious task but as a dynamic collaboration between
human ingenuity and machine intelligence.

In conclusion, my journey into developing RPA nano services represents a steadfast commitment to
revolutionizing programming paradigms through innovation and automation. By harnessing the
power of RPA AI technology, we embark on a transformative journey—one where efficiency,
scalability, and creativity converge to shape the future of technology-driven enterprises.

Advantages of RPA AI Technology

Case Studies and Success Stories

Future Outlook

Conclusion

1. End user inputs text from UI
2. Frontend sends that input via API
3. API calls NLP Parser
4. NLP Parser calls LLM
5. NLP Parser gets token model from spaCy Library
6. NLP process the token model and results command model
7. Execution Router process the command model, maps and sends it to Execution Library
8. Execution Library returns execution result and Execution Router sends it to NLP Parser
9. NLP Parser packages the result into human readable format and sends it to API

10. API sends that result to frontend
11. Frontend shows the result into end user

Workflow

https://lib.introvesia.com/uploads/images/gallery/2025-01/rpa.png

Clone the repository from Github:

API Server Installation
Preparation

apt install python3-pip
apt install python3.12-venv
python3 -m venv env
source env/bin/activate

Step 1 - Git clone

git clone https://github.com/ahmadsidrap/rpa-nano.git

Step 2 - Install libraries
cd rpaNanoRouter
pip install -r requirements.txt

Step 3 - Migrate DB
python manage.py migrate

Step 4 - Create Superuser
python manage.py createsuperuser

Step 5 - Run the server

python manage.py runserver

Verify the status:

Run RPA Router as Service
Create service file

sudo nano /etc/systemd/system/rpa-nano.service

[Unit]
Description=RPA Nano
After=network.target

[Service]
User=root
WorkingDirectory=/root/docker/rpa-nano/rpaNanoRouter
ExecStart=/root/docker/rpa-nano/rpaNanoRouter/env/bin/python3.12 /root/docker/rpa-
nano/rpaNanoRouter/manage.py runserver 0.0.0.0:3002
Restart=always

[Install]
WantedBy=multi-user.target

Activate service
sudo systemctl daemon-reload
sudo systemctl start rpa-nano
sudo systemctl enable rpa-nano

sudo systemctl status rpa-nano

Build virtual environment.

Activate virtual environment.

Run Server with Virtual
Environment
Installation

sudo apt install python3-virtualenv -y

virtualenv env

source env/bin/activate

NLP Parser parses the text into token model. Token model is a model that contains the structure of
the text. Parser classifies these model into several queries.

Query is a set pattern that will parse token model. The matches result will be transformed into
command model. The command model properties are as following.

command - The command that will tell Execution Router
target - The target of execution
related_tokens - The tokens that are related to the target. For example, in current date ,
current is related tokens
type - The type of command
source - It can be an input for the target for execution

The match pattern:

1. Index 0 → Position: DET
2. Index 1 → Position: NOUN
3. Index 2 → Position: AUX , optional
4. Index 3 → Position: ADV
5. Index 4 → Position: PUNCT , optional

Example matches:

What time is it now?
What time is now?
What time now?

Token transformation:

1. command : NOUN

NLP Parser

Query and Transformation

1. WhatQuery

2. WhoQuery

The match pattern:

1. Index 0 → Position: PRON
2. Index 1 → Position: AUX
3. Index 2 → Position: PRON

Example matches:

Who are you?
Who is that?

Token transformation:

None

Example matches:

1. Index 0 → Position: NOUN
2. Index 1 → Position: ADV , optional
3. Index 2 → Position: AUX
4. Index 3 → Position: PUNCT , optional

Example matches:

Current time is?

Token transformation:

1. command : NOUN

Example matches:

1. Index 0 → Position: VERB
2. Index 1 → Position: PRON , optional
3. Index 2 → Position: DET , optional
4. Index 3 → Position: ADJ , optional
5. Index 4 → Position: NOUN

3. AuxiliaryQuery

4. CommandQuery
Pattern 1

Example matches:

Show me directory media

Example matches:

1. Index 0 → Position: VERB
2. Index 1 → Position: PRON , optional
3. Index 2 → Position: DET , optional
4. Index 3 → Position: ADJ , optional
5. Index 4 → Position: PROPN

Example matches:

Show me running containers

Token transformation:

1. target : NOUN or PROPN

Pattern 2

Usage:

API References
POST /api/rpa/nlp

curl -X POST -H "Content-Type: application/json" -d '{"message": "what time is it now?"}'
http://localhost:8000/api/rpa/nlp

For English:

NLP Library Installation

python -m spacy download en_core_web_sm

